
A robust implementation of Axioms of Choice

Liron Cohen

Cornell University, Ithaca, NY, USA



Extending the Proofs-as-Programs Paradigm

Proofs Programs=

Proofs Programs=

How can modern notions
of computation influence
and contribute to formal
foundations?



Extending the Proofs-as-Programs Paradigm

Proofs Programs=

How can modern notions
of computation influence
and contribute to formal
foundations?



Extending the Proofs-as-Programs Paradigm

Proofs Programs=

How can modern notions
of computation influence
and contribute to formal
foundations?



The Axiom of Choice

Given any collection of nonempty sets, there is a way to
assign a representative element to each set in the collection



Motivation

AC unifies standard constructive representations of the reals.

Dedekind cuts Cauchy sequences

computationally inefficient not constructively complete

Unclear status in constructivism.

Some variants are considered trivially true due to the
specific interpretation of the type constructors Σ and Π.
Prior constructive models of choice implicitly rely on a
deterministic computation system.

⇒ Fail to extend with new computational capabilities.



Motivation

AC unifies standard constructive representations of the reals.

Dedekind cuts Cauchy sequences

computationally inefficient not constructively complete

Unclear status in constructivism.

Some variants are considered trivially true due to the
specific interpretation of the type constructors Σ and Π.
Prior constructive models of choice implicitly rely on a
deterministic computation system.

⇒ Fail to extend with new computational capabilities.



Motivation

AC unifies standard constructive representations of the reals.

Dedekind cuts Cauchy sequences

computationally inefficient not constructively complete

Unclear status in constructivism.
Some variants are considered trivially true due to the
specific interpretation of the type constructors Σ and Π.
Prior constructive models of choice implicitly rely on a
deterministic computation system.
⇒ Fail to extend with new computational capabilities.



Logical Statements

Given any collection of nonempty sets, there is a way to
assign a representative element to each set in the collection

Every total relation contains a function with the same domain

For any equivalence relation, there is a choice function
that picks a representative from each equivalence class

Not
constructively
equivalent!



Logical Statements

Given any collection of nonempty sets, there is a way to
assign a representative element to each set in the collection

Every total relation contains a function with the same domain

For any equivalence relation, there is a choice function
that picks a representative from each equivalence class

Not
constructively
equivalent!



Logical Statements

Given any collection of nonempty sets, there is a way to
assign a representative element to each set in the collection

Every total relation contains a function with the same domain

For any equivalence relation, there is a choice function
that picks a representative from each equivalence class

Not
constructively
equivalent!



Logical Statements

Given any collection of nonempty sets, there is a way to
assign a representative element to each set in the collection

Every total relation contains a function with the same domain

For any equivalence relation, there is a choice function
that picks a representative from each equivalence class

Not
constructively
equivalent!



Type Theoretical Statements

???

(
∀x : A. ∃y : B. ϕ(x , y)

)
⇒
(
∃f : BA. ∀x : A. ϕ(x , fx)

)
∃f : A/≈ → A. ∀q : A/≈. [f (q)]≈ = q



Type Theoretical Statements

???

(
∀x : A. ∃y : B. ϕ(x , y)

)
⇒
(
∃f : BA. ∀x : A. ϕ(x , fx)

)

∃f : A/≈ → A. ∀q : A/≈. [f (q)]≈ = q



Type Theoretical Statements

???

(
∀x : A. ∃y : B. ϕ(x , y)

)
⇒
(
∃f : BA. ∀x : A. ϕ(x , fx)

)
∃f : A/≈ → A. ∀q : A/≈. [f (q)]≈ = q



Type Theoretical Statements

???

(
∀x : A. ∃y : B. ϕ(x , y)

)
⇒
(
∃f : BA. ∀x : A. ϕ(x , fx)

)
∃f : A/≈ → A. ∀q : A/≈. [f (q)]≈ = q



Computational Interpretation of AC

Goal #1:
Provide a computational interpretation of a strong variant of AC

t :

(A→ B/≈)

→ (A→ B)

non-deterministic
computation

deterministic
computation

s.t. t reduces in a manner that reflects a choice function.



Computational Interpretation of AC

Goal #1:
Provide a computational interpretation of a strong variant of AC

t :

(A→ B/≈)

→ (A→ B)

non-deterministic
computation

deterministic
computation

s.t. t reduces in a manner that reflects a choice function.



Computational Interpretation of AC

Goal #1:
Provide a computational interpretation of a strong variant of AC

t :

(A→ B/≈)

→ (A→ B)

non-deterministic
computation

deterministic
computation

s.t. t reduces in a manner that reflects a choice function.



Computational Interpretation of AC

Goal #1:
Provide a computational interpretation of a strong variant of AC

t :

(A→ B/≈)

→

(A→ B)

non-deterministic
computation

deterministic
computation

s.t. t reduces in a manner that reflects a choice function.



Computational Interpretation of AC

Goal #1:
Provide a computational interpretation of a strong variant of AC

t :

(A→ B/≈)

→

(A→ B)

non-deterministic
computation

deterministic
computation

s.t. t reduces in a manner that reflects a choice function.



Computational Interpretation of AC

Goal #1:
Provide a computational interpretation of a strong variant of AC

t : (A→ B/≈) → (A→ B)

non-deterministic
computation

deterministic
computation

s.t. t reduces in a manner that reflects a choice function.



Implementation Weakening

Implementation through memoization.
Stateful computation.

BUT – memoizing non-deterministically generates
deterministic functions.

t :

(A→ B/≈)

→ (A→B/A→≈)

non-deterministic
computation

deterministic
computation

NDAC



Implementation Weakening

Implementation through memoization.
Stateful computation.
BUT – memoizing non-deterministically generates
deterministic functions.

t :

(A→ B/≈)

→ (A→B/A→≈)

non-deterministic
computation

deterministic
computation

NDAC



Implementation Weakening

Implementation through memoization.
Stateful computation.
BUT – memoizing non-deterministically generates
deterministic functions.

t :

(A→ B/≈)

→ (A→B/A→≈)

non-deterministic
computation

deterministic
computation

NDAC



Implementation Weakening

Implementation through memoization.
Stateful computation.
BUT – memoizing non-deterministically generates
deterministic functions.

t :

(A→ B/≈)

→ (A→B/A→≈)

non-deterministic
computation

deterministic
computation

NDAC



Implementation Weakening

Implementation through memoization.
Stateful computation.
BUT – memoizing non-deterministically generates
deterministic functions.

t :

(A→ B/≈)

→

(A→B/A→≈)

non-deterministic
computation

deterministic
computation

NDAC



Implementation Weakening

Implementation through memoization.
Stateful computation.
BUT – memoizing non-deterministically generates
deterministic functions.

t :

(A→ B/≈)

→

(A→B/A→≈)

non-deterministic
computation

deterministic
computation

NDAC



Implementation Weakening

Implementation through memoization.
Stateful computation.
BUT – memoizing non-deterministically generates
deterministic functions.

t : (A→ B/≈) → (A→B/A→≈)

non-deterministic
computation

deterministic
computation

NDAC



Implementation Weakening

Implementation through memoization.
Stateful computation.
BUT – memoizing non-deterministically generates
deterministic functions.

t : (A→ B/≈) → (A→B/A→≈)

non-deterministic
computation

deterministic
computation

NDAC



Constructivism Weakening

NDAC LEM

Diaconescu’s Theorem

t : (N→ B/≈)→ (N→B/N→≈)NDCC



Constructivism Weakening

NDAC LEM

Diaconescu’s Theorem

t : (N→ B/≈)→ (N→B/N→≈)NDCC



Key Implementation Features

Goal #2:
Implement NDCC

Main features of the framework:

General framework
higher-order abstract syntax
models rather than a specific calculus

Extensible – no closed world assumption
Robust w.r.t. (certain) extensions to the underlying calculus



The Effective Topos

A topos

A categorical model of both set theory and type theory.
Objects ∼ types
Morphisms ∼ expression

Cartesian closed – a model of simply-typed λ-calculus.
Contains equalizers – an internal notion of equality.
Exhibit an impredicative type of propositions Ω.
Models a powerful type theory: dependent subset and
quotient types and extensionality of entailment.

The effective topos (Eff )

Has a natural-numbers object
All functions on the natural numbers are Turing-computable



Constructing the Effective Topos

topos

model of HOL

P 7→ Set(P)

‘tripos-to-topos’

evidenced frame

F 7→ UFam(F )



Constructing the Effective Topos

the effective topos

Kleene’s realizability model of HOL

P 7→ Set(P)

‘tripos-to-topos’

evidenced frame

F 7→ UFam(F )



Evidenced Frame

An evidenced frame is an inhabited set Φ (propositions), a set E
(evidence codes), and an evidence relation φ1

e−→→ φ2 s.t.

Reflexivity An evidence code eid ∈ E
φ

eid−−→→ φ

Transitivity A binary operator · ; · : E × E → E
φ1

e−→→ φ2 =⇒ φ2
e′

−→→ φ3 =⇒ φ1
e ; e′

−−−→→ φ3

Conjunction ∧ : Φ×Φ→ Φ, L·, ·M : E ×E → E and efst, esnd ∈ E
φ1 ∧ φ2

efst−−→→ φ1 ; φ1 ∧ φ2
esnd−−→→ φ2

φ′ e1−→→ φ1 =⇒ φ′ e2−→→ φ2 =⇒ φ′ Le1,e2M−−−−→→ φ1 ∧ φ2

Implication ⊂ : Φ× Φ→ Φ, * · + : E → E , and eeval ∈ E
φ1 ∧ φ2

e−→→ φ3 =⇒ φ1
*e+−−→→ φ2⊂φ3

φ1 ∧ (φ1⊂φ2) eeval−−−→→ φ2

Quantification For {φi}i∈I , propositions
⋂

i∈I φi and
⋃

i∈I φi
∀i .

⋂
i∈I φi

eid−−→→ φi ; (∀i . φ e−→→ φi ) =⇒ φ
e−→→
⋂

i∈I φi

∀i . φi
eid−−→→

⋃
i∈I φi ; (∀i . φi

e−→→ φ′) =⇒
⋃

i∈I φi
e−→→ φ′



NDCC in the Effective Topos

Eff exhibits NDCC for B iff the choice predicate is provable in P.

R
morphism w.r.t. =N and ≈

S
determinization of R w.r.t. =B

∀R : N× B → ΩP .
left-total
n =N n =⇒ ∃b. n R b
right-unique w.r.t. ≈
n R b1 ∧ n R b2 =⇒ b1 ≈ b2

congruent
n1 =N n2 ∧ b1 ≈ b2 ∧ n1 R
b1 =⇒ n2 R b2

strict
n R b =⇒ n =N n ∧ b ≈ b

∃S : N× B → ΩP .
R-inclusion
n S b =⇒ n R b
left-total
n =N n =⇒ ∃b. n S b
right-unique w.r.t. =B

n S b1∧n S b2 =⇒ b1 =B b2

congruent
n1 =N n2∧n1 S b =⇒ n2 S b



NDCC in the Effective Topos

Eff exhibits NDCC for B iff the choice predicate is provable in P.

R
morphism w.r.t. =N and ≈

S
determinization of R w.r.t. =B

∀R : N× B → ΩP .
left-total
n =N n =⇒ ∃b. n R b
right-unique w.r.t. ≈
n R b1 ∧ n R b2 =⇒ b1 ≈ b2

congruent
n1 =N n2 ∧ b1 ≈ b2 ∧ n1 R
b1 =⇒ n2 R b2

strict
n R b =⇒ n =N n ∧ b ≈ b

∃S : N× B → ΩP .
R-inclusion
n S b =⇒ n R b
left-total
n =N n =⇒ ∃b. n S b
right-unique w.r.t. =B

n S b1∧n S b2 =⇒ b1 =B b2

congruent
n1 =N n2∧n1 S b =⇒ n2 S b



NDCC in the Effective Topos

Eff exhibits NDCC for B iff the choice predicate is provable in P.

R
morphism w.r.t. =N and ≈

S
determinization of R w.r.t. =B

∀R : N× B → ΩP .
left-total
n =N n =⇒ ∃b. n R b
right-unique w.r.t. ≈
n R b1 ∧ n R b2 =⇒ b1 ≈ b2

congruent
n1 =N n2 ∧ b1 ≈ b2 ∧ n1 R
b1 =⇒ n2 R b2

strict
n R b =⇒ n =N n ∧ b ≈ b

∃S : N× B → ΩP .
R-inclusion
n S b =⇒ n R b
left-total
n =N n =⇒ ∃b. n S b
right-unique w.r.t. =B

n S b1∧n S b2 =⇒ b1 =B b2

congruent
n1 =N n2∧n1 S b =⇒ n2 S b



NDCC in the Effective Topos

Eff exhibits NDCC for B iff the choice predicate is provable in P.

R
morphism w.r.t. =N and ≈

S
determinization of R w.r.t. =B

∀R : N× B → ΩP .
left-total
n =N n =⇒ ∃b. n R b
right-unique w.r.t. ≈
n R b1 ∧ n R b2 =⇒ b1 ≈ b2

congruent
n1 =N n2 ∧ b1 ≈ b2 ∧ n1 R
b1 =⇒ n2 R b2

strict
n R b =⇒ n =N n ∧ b ≈ b

∃S : N× B → ΩP .
R-inclusion
n S b =⇒ n R b
left-total
n =N n =⇒ ∃b. n S b
right-unique w.r.t. =B

n S b1∧n S b2 =⇒ b1 =B b2

congruent
n1 =N n2∧n1 S b =⇒ n2 S b



NDCC in the Effective Topos

Eff exhibits NDCC for B iff the choice predicate is provable in P.

R
morphism w.r.t. =N and ≈

S
determinization of R w.r.t. =B

∀R : N× B → ΩP .
left-total
n =N n =⇒ ∃b. n R b
right-unique w.r.t. ≈
n R b1 ∧ n R b2 =⇒ b1 ≈ b2

congruent
n1 =N n2 ∧ b1 ≈ b2 ∧ n1 R
b1 =⇒ n2 R b2

strict
n R b =⇒ n =N n ∧ b ≈ b

∃S : N× B → ΩP .
R-inclusion
n S b =⇒ n R b
left-total
n =N n =⇒ ∃b. n S b
right-unique w.r.t. =B

n S b1∧n S b2 =⇒ b1 =B b2

congruent
n1 =N n2∧n1 S b =⇒ n2 S b



The Hidden Assumption(s) in the Proof of NDCC

Let vtot be the λ-value that implements totality of R
(extracted from the given evidence).
For each n, computing (vtot nλ) results in an element vn of
Rn,b for some b.
For each n, pick one such b to be bn.
Define Sn,bn to be the singleton set {vn} if such exists,
otherwise let Sn,b be empty.

assumes CC
in the metatheory

right-uniqueness of S
relies on vtot being deterministic



The Hidden Assumption(s) in the Proof of NDCC

Let vtot be the λ-value that implements totality of R
(extracted from the given evidence).
For each n, computing (vtot nλ) results in an element vn of
Rn,b for some b.
For each n, pick one such b to be bn.
Define Sn,bn to be the singleton set {vn} if such exists,
otherwise let Sn,b be empty.

assumes CC
in the metatheory

right-uniqueness of S
relies on vtot being deterministic



The Hidden Assumption(s) in the Proof of NDCC

Let vtot be the λ-value that implements totality of R
(extracted from the given evidence).
For each n, computing (vtot nλ) results in an element vn of
Rn,b for some b.
For each n, pick one such b to be bn.
Define Sn,bn to be the singleton set {vn} if such exists,
otherwise let Sn,b be empty.

assumes CC
in the metatheory

right-uniqueness of S
relies on vtot being deterministic



Our approach

the effective topos

Kleene’s realizability model of HOL

P 7→ Set(P)

‘tripos-to-topos’

evidenced frame

F 7→ UFam(F )

enabling internal memoization

Kripke semantics for heaps +

Kleene’s realizability for programs

models NDCC



Our approach

a stateful variant of the effective topos

stateful realizability model of HOL

P 7→ Set(P)

‘tripos-to-topos’

stateful evidenced frame

F 7→ UFam(F )

enabling internal memoization

Kripke semantics for heaps +

Kleene’s realizability for programs

models NDCC



Our approach

a stateful variant of the effective topos

stateful realizability model of HOL

P 7→ Set(P)

‘tripos-to-topos’

stateful evidenced frame

F 7→ UFam(F )

enabling internal memoization

Kripke semantics for heaps +

Kleene’s realizability for programs

models NDCC



Our approach

a stateful variant of the effective topos

stateful realizability model of HOL

P 7→ Set(P)

‘tripos-to-topos’

stateful evidenced frame

F 7→ UFam(F )

enabling internal memoization

Kripke semantics for heaps +

Kleene’s realizability for programs

models NDCC



Our approach

a stateful variant of the effective topos

stateful realizability model of HOL

P 7→ Set(P)

‘tripos-to-topos’

stateful evidenced frame

F 7→ UFam(F )

enabling internal memoization

Kripke semantics for heaps +

Kleene’s realizability for programs

models NDCC



Incorporating State

Naive stateful evidenced frame:

hφv propositions indicate which values in which heaps serve as
realizers of φ.

φ1
e−→→ φ2 for all h and v1 s.t. h φ1 v1: e terminates on v1 under h
and returns v2 and results in a modified h′ s.t. h′ φ2 v2.

Problem #1: sequential pairing and heap modification.
⇒ propositions must be preserved by future heaps.
Problem #2: ensuring the memoization function exhibits the
required behavior under all potential futures.
⇒ propositions must be preserved only by well-formed futures.

The memoized computation is put into the heap and
inputs to are restricted to be λ-encodings of numbers, so
the heap can independently verify the memoized data.



Incorporating State

Naive stateful evidenced frame:

hφv propositions indicate which values in which heaps serve as
realizers of φ.

φ1
e−→→ φ2 for all h and v1 s.t. h φ1 v1: e terminates on v1 under h
and returns v2 and results in a modified h′ s.t. h′ φ2 v2.

Problem #1: sequential pairing and heap modification.
⇒ propositions must be preserved by future heaps.
Problem #2: ensuring the memoization function exhibits the
required behavior under all potential futures.
⇒ propositions must be preserved only by well-formed futures.

The memoized computation is put into the heap and
inputs to are restricted to be λ-encodings of numbers, so
the heap can independently verify the memoized data.



Operational Semantics

While evaluation might modify the heap, we are not concerned
with a specific evolvement of the heap, rather all possible futures.

Reduction relation
c ↓h c ′

coalgebra of certain rules
No modified heap

Termination relation
c ↓h

algebra of certain rules

termination must be preserved by (well-formed) futures

∀h, h′, c. h �wf h′ ∧ c ↓h =⇒ c ↓h′

Progress: termination under a well-formed heap ensures
reducibility under some future heap

∀h, c. ` h ∧ c ↓h =⇒ ∃h′, c ′. h �wf h′ ∧ c ↓h′ c ′



Operational Semantics

While evaluation might modify the heap, we are not concerned
with a specific evolvement of the heap, rather all possible futures.

Reduction relation
c ↓h c ′

coalgebra of certain rules
No modified heap

Termination relation
c ↓h

algebra of certain rules

termination must be preserved by (well-formed) futures

∀h, h′, c. h �wf h′ ∧ c ↓h =⇒ c ↓h′

Progress: termination under a well-formed heap ensures
reducibility under some future heap

∀h, c. ` h ∧ c ↓h =⇒ ∃h′, c ′. h �wf h′ ∧ c ↓h′ c ′



Operational Semantics

While evaluation might modify the heap, we are not concerned
with a specific evolvement of the heap, rather all possible futures.

Reduction relation
c ↓h c ′

coalgebra of certain rules
No modified heap

Termination relation
c ↓h

algebra of certain rules

termination must be preserved by (well-formed) futures

∀h, h′, c. h �wf h′ ∧ c ↓h =⇒ c ↓h′

Progress: termination under a well-formed heap ensures
reducibility under some future heap

∀h, c. ` h ∧ c ↓h =⇒ ∃h′, c ′. h �wf h′ ∧ c ↓h′ c ′



Operational Semantics

While evaluation might modify the heap, we are not concerned
with a specific evolvement of the heap, rather all possible futures.

Reduction relation
c ↓h c ′

coalgebra of certain rules
No modified heap

Termination relation
c ↓h

algebra of certain rules

termination must be preserved by (well-formed) futures

∀h, h′, c. h �wf h′ ∧ c ↓h =⇒ c ↓h′

Progress: termination under a well-formed heap ensures
reducibility under some future heap

∀h, c. ` h ∧ c ↓h =⇒ ∃h′, c ′. h �wf h′ ∧ c ↓h′ c ′



Stateful Evidenced Frame

h ` φ1
e−→→ φ2: e is evidence in heap h that φ1 implies φ2

∀c1. h φ1 c1 =⇒ (e c1 ↓h ∧ ∀c2. e c1 ↓h c2 =⇒ h φ2 c2)

Propositions Relations φ between heaps and codes s.t.
∀h, c. h φ c =⇒ val(c) ∧ ∀h′. h �wf h′ =⇒ h′ φ c
Codes Syntactically-encodable functions e : C → C .
Evidence φ1

e−→→ φ2: ∀h. ` h =⇒ h ` φ1
e−→→ φ2.

h (φ1 ∧ φ2) c ∃c1, c2. c = pair c1 c2 ∧ h φ1 c1 ∧ h φ2 c2

h (φ1⊂φ2) c ∃e. c = lambda e ∧ ∀h′. h �wf h′ ⇒ h′ ` φ1
e−→→ φ2

h
⋂
i∈I φi c ∀i . h φi c

h
⋃
i∈I φi c ∃i . h φi c

consistent



Stateful Evidenced Frame

h ` φ1
e−→→ φ2: e is evidence in heap h that φ1 implies φ2

∀c1. h φ1 c1 =⇒ (e c1 ↓h ∧ ∀c2. e c1 ↓h c2 =⇒ h φ2 c2)

Propositions Relations φ between heaps and codes s.t.
∀h, c. h φ c =⇒ val(c) ∧ ∀h′. h �wf h′ =⇒ h′ φ c
Codes Syntactically-encodable functions e : C → C .
Evidence φ1

e−→→ φ2: ∀h. ` h =⇒ h ` φ1
e−→→ φ2.

h (φ1 ∧ φ2) c ∃c1, c2. c = pair c1 c2 ∧ h φ1 c1 ∧ h φ2 c2

h (φ1⊂φ2) c ∃e. c = lambda e ∧ ∀h′. h �wf h′ ⇒ h′ ` φ1
e−→→ φ2

h
⋂
i∈I φi c ∀i . h φi c

h
⋃
i∈I φi c ∃i . h φi c consistent



Extending the Framework

The extended code language:
alloc allocation of a new memoization table in the heap.
lookup retrieval of a value at a specific index in the memoization

table in the heap.

h@` 7→ cf location ` is allocated to the generator function cf in h.

n h@`
_ c in the memoization table at location ` in h, the input n has

been memoized to c.

Allocated locations are preserved by futures and have a unique
generator function.
Memoized entries are preserved by futures and are unique.
Memoized entries agree with the generator function
associated with the allocated location.



Proof of NDCC

R
morphism w.r.t. =N and ≈

S
determinization of R w.r.t. =B

Allocate a new memory location ` in h whose generator
function is the evidence that R is left-total.
Define S s.t. c is evidence of Sn,b under heap h′ whenever
n h′@`

_ c ∧ h �wf h′ ∧ b = ChoiceR(n, c, · · · ) holds.

λ〈xtot , xru, xcong , xstr 〉. let ` := new_table xtot in〈
λxs . xs ,

λxn. `[xn],
λ〈xs ,_〉. fst (cstr (snd (xstr xs))) ,
λ〈_, xs〉. xs

〉
R-inclusion

totality

right-unique
congruent

evidence of the strictness
of ≈ w.r.t. =B



Proof of NDCC

R
morphism w.r.t. =N and ≈

S
determinization of R w.r.t. =B

Allocate a new memory location ` in h whose generator
function is the evidence that R is left-total.
Define S s.t. c is evidence of Sn,b under heap h′ whenever
n h′@`

_ c ∧ h �wf h′ ∧ b = ChoiceR(n, c, · · · ) holds.

λ〈xtot , xru, xcong , xstr 〉. let ` := new_table xtot in〈
λxs . xs ,

λxn. `[xn],
λ〈xs ,_〉. fst (cstr (snd (xstr xs))) ,
λ〈_, xs〉. xs

〉
R-inclusion

totality

right-unique
congruent

evidence of the strictness
of ≈ w.r.t. =B



Proof of NDCC

R
morphism w.r.t. =N and ≈

S
determinization of R w.r.t. =B

Allocate a new memory location ` in h whose generator
function is the evidence that R is left-total.
Define S s.t. c is evidence of Sn,b under heap h′ whenever
n h′@`

_ c ∧ h �wf h′ ∧ b = ChoiceR(n, c, · · · ) holds.

λ〈xtot , xru, xcong , xstr 〉. let ` := new_table xtot in〈
λxs . xs ,

λxn. `[xn],
λ〈xs ,_〉. fst (cstr (snd (xstr xs))) ,
λ〈_, xs〉. xs

〉
R-inclusion

totality

right-unique
congruent

evidence of the strictness
of ≈ w.r.t. =B



Future Work

Eliminate the metatheoretic assumptions.
Implement stronger variants of the AC:

Non-Deterministic Countable Choice.
Choice for any set with decidable equality

Explore other applications of stateful evidenced frames.
By storing partially-constructed graphs of numbers, one
could create a model in which all countable connected
graphs have a spanning tree.
A constructive variant of Zorn’s Lemma.

Thank you!



Future Work

Eliminate the metatheoretic assumptions.
Implement stronger variants of the AC:

Non-Deterministic Countable Choice.
Choice for any set with decidable equality

Explore other applications of stateful evidenced frames.
By storing partially-constructed graphs of numbers, one
could create a model in which all countable connected
graphs have a spanning tree.
A constructive variant of Zorn’s Lemma.

Thank you!


